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SUMMARY

A linearized theoretical analysis has been made to determine
mininnxn-wave-dragairfoil sections for arrow wings having the same air-
foil sections at all spanwise stations. The drag of the wings was mini-
mized subject to the condition of either a given thiclmess ratio at a
specified chordwise location or a given volume. Numerical computations
of the airfoil shape and wing wave drag were performed for a delta wing
and for sm arrow wing having a ratio of the tangent of the trailing-edge
sweep angle to the tangent of the leading-edge sweep angle of 0.4. The
range of the ratio of the tangent of the leading-edge sweep angle to the
tangent of the ~ch line sweep angle extended from O (two-dimensional)
tO 2.5. —

INTRODUCTION

At supersonic speeds, the theoretical determination of minimum-
wave-drag wings is of importance in estab13.shingcriteria for efficient
aeronautical design. There is a rapidly increasing amount of information
based on linesr theory (refs. 1 to 4) and slender-body theory (refs. 5
and 6) to serve as a guide for the selection of three-dimensional
minimum-wave-drag wings of given thickness or volume. As yet, however,
little information exists for speci&ing the shapes for minirmn-dr%
airfoil sections for wing plan forms of current interest at supersonic
Mach numibers. It is the purpose of the present paper to study this
problemby linearized theory.

A constant-thickness-ratiowing of arrow plan form tith am arbitrsry
airfoil section is considered. For convenience, the root chord of the
wing is assumed to be unity. The airfoil section (assumed to be the
sane at all spanwise stations) is composed of a series of straight-line
segments. The drag of such a wing is then minimized subject to the
restriction of either a given thiclmess ratio at a specified chordwise
location or a given volume, and the equations for the corresponding
minimum-drag airfoil shapes are determined. Computations are made to

● estab13sh the minimum nuniberof sides reqtired for a reasonable deter-
mination of the airfoil shape and dr%. Optimum sections and the
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corresponding wing drag coefficients are then calculated for a series of
delta and arrow wings swept various smounts ahead of and behind the Mach
lines. As a limiting case, the results of the optimum-airfoil calcula- .

tions for a delta wing of fixed volume are compared with those of the
corresponding airfoil derived snal.yticallyfrom slender-body theory.

The authors wish to acknowledge the cooperative efforts of the
National Bureau of Stsndards personnel, particularly Otto Steiner,
Sally Tsingou, and Norman Levine, who set up the coding and carried
through the numerical computations on the ~ational Bureau of Standards
Eastern Automatic Computer during June 1953,
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z(x)

K

P

Mach number —

cotangent of Mach an@eJ @7 .-

thickness ratio

nuriberof equally spaced straight-ltne segments used to form
one side of symmetrical airfoil (number of chord divisions] ‘v

tangent of sweep singleof smy arbitrq ridge line
.

tangent of sweep angle of lead@g edge —

tangent of sweep angle of trailing edge —

Cartesian coordinates (see fig. 1)

cross-sectional area of body at station x

maximum cross-sectional area of body

slope of airfoil surface divided by thickness ratio

airfoil shape function

ratia of airfoil cross-sectional.area to area of circum-
scribing rectangle

integer s~ecifying last subsonic ridge line
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h
m integer speci~ing location of maximum thickness

.
i,j,r,a,j3 arbitrary indices

AAr = Ar - Ar-J_

Bi,B,D,f functions used to determine drag

F function of AA

CD drag coefficient

definedby equation (8)

based on wing mea

AN4LYSIS

Linear Theory

In reference 1, the baaic equations for the drag of arrow wings of
double-wedge airfoil sections have been obtained by the superposition
of constant-strength source distributions within the wing plan form.
This method has been extended in reference 7 into a generalized proce-

~. dure whereby the wave drag of arrow wings having arbitrary profiles msy
be determined. This extension Is accomplished by using a finite number
of constant-strength source distributions and hence entails approxi-
mating the airfoil section by a multisided polygon. If the sides of
the polygon are equally spaced (fig. 1) and the airfoil section is
symmetrical, the drag at zero angle of attack is, in slightly different
notation from that of reference 7,

() ‘N+l #81-—
nl

=-5 t wi)2~B’ni&ww
i=l j=l (J

(1)
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where the new variable Alr is given by

A& = ifr - A~-1

and where h is defined by the relationship

In equation (l), the index p defines the last subsonic ridge line (a
subsonic J3ne is one whose normal Mach number component is subsonic;
see fig. 1) and has the integer value determined from

N(nl - 1) N(nl - 1}
+l>p>

nl - nWl nl - ‘N+l

The values of n are geometrically related by the

i-l
ni = nl - —(n~ - ‘N+l)

N

The formulas for the functions B’, B, D, and f
ence 7 are

( )

n~

[

10ge ni
B’ ni,~ =

nj cosh-%i

1-
;%)’fi+~~+
~

(2)

equation
~t

(3) -

obtained from refer-

--l
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()‘3

[

loge ni
+3

cosh-lmi
B nijm =

1-
;3)’ ~Tl ‘i-+

()ni
D ni,— =

‘J

loge&-1

(4b)

(4C)

In order to investigate optimum airfoil sections for arrow wings,
the drag, as given by equation (1), is minimized subject to the speci-

. fied thickness or volume condition and the airfoil shape parameters Ahi
are determined.
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The specified conditions we:

(1) The airstresm ahead of and behind the wing is parallel to the
wing-chord plane

Y#l’+ fii’o” (5)
i=l

(2) The airfoil must close at the leading and trailing edges

N+l
#2’~i @’o (6)

i=l

(3) The airfoil must h~e a .@ven thic.~ess ratio t at a SPeC~fied
fraction of the chord m/N

5#5a ~l(m+l-l)AA~-N=O=2 (7t3j
=

or the airfoil must have a given cross-sectional area so that the wing
has a given volume

Yf% = $ ~=1 i2Ahi-K=0

In equation (~), K specifies the ratio of-the cross-sectional

(P)

area
of the optimum airfoil to the area of the c~cumscribing rectangle (a
point discussed subsequently).

The shape of the minimum-drag airfoil canbe obtd.ned analytically
by the extreme-value theory of reference 8. Since the thiclmess dis-
tribution z(x)/t of an optimum airfoil section is independent of the
thickness ratio (a fact that canbe inferred from eq. (1)), the minimum-
drag shapes are determined by first formulating the function

{1@3a*

F=+~N>)2+x’’+y’2+z“b
(8)

‘The braces indicate that the appropriate condition, either @3a or
@zk, is used.

u

.

)$-J
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2 ~cD is the f~cwhere

8(’N )

t.ionof &f specifiedby equation (1]
““+1 T

.—

~ @I, @2, ‘~3a, and pm sre the functions of Ah specified by

equations (~), (6), (7a), and (7b], respectively. The variakles X, Y,
and Z are undetermined multipliers. The optimum AA values axe then
obtained by solving the system of N + 4 Enear simdtaaeous algebraic
equations given by:

aF=o

bm~

d~=o

@2=o

@3a = o

@3b = O

Equations (9) to (32) are shown in
form in figure 2; the relations for the

and either

or

(9)

(lo)

(n)

(12a)

(12b)

matrix notation in exploded
individual entries in the matrix

are also i~cluded. The interchange of the area condition for the thick-
ness condition simply changes one row and one column of the matrix as
indicated in figure 2.

h the numerical evaluation of the optinmm airfoil for a specified
srea, the parameter K depends upon the airfoil shape. The calculated
values of Ah, however, are direct~ proportional to any assumed value
of K. Hence, any arbitrary value may be initially selected and the
solution linearly scaled so that the relationship for the airfoil
coordinates

t A&l
% = 2Z~-1 - Zr-2 + ‘ (13)

yields a value of Zr/t equal to O.~ at the location of maximum thiclmess.
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Slender-Body Theory

h reference 6, it is established, on the basis of slender-body
theoqy, that the optirmunwing and body of revolution (both for a given
length and volume) have the same sxial cross-sectional area distribution.
Hence, as a limiting case for n arbitrarily large, the airfoil section
obtained by this slender-body method can be compared with the results
of the previous linear analysis.

—

The shape of the airfoil section of a constant-thiclmess-ratiodelta
wing having the same sxial cross-sectional area distribution as a body
of revolution is

z(x) _ &
(1 - X)*+ 2A(x)

t

2(1 - %+&’] ‘-+2+%n.ax)
X=*

(~)...

where % is the location of maximum thickness of the airfoil and
A(x) is the axial cross-sectional area distribution of the body or wing.
Equation (14), when applied to the minimum-drag body of revolution for a
given length and volume (ref. 9] v

A(x)
= 8(x - #2 (l’j) -

results in the airfoil shape

*= 3-6
where

4“

(x-x2)1/2(a-3)(x- I)
(16)

(* - xmax2)1’2(%mx - $(+ -0

The shape determined by equation (16) is compared with the linesr-
theory shapes In the following section.

.

*
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NUMERICAL RESUilFS

Effect of number of sides N.- The initial problem consisted in
establishing the number of sides per surface N required for a reason-
able approximation to the shape and drag of the limiting airfoil having
an infinite number of sides. For this trial calculation a delta wing
was assumed and the thickness condition applied. A location of maximum
thickness m/N of 0.20 of the chord was selected and a value of nl = 1.7
(sbsomk leading edge) was assumed. A subsonic-leading-edge condition
was selected since it was anticipated that the limiting airfoil would
have a round nose and hence require the largest number of flat sides
per surface N, for a good approximation.

The results of the computations for N = ~, 10, 20, and 40 sides
me shown in figure 3 sad presented in table I. Perhaps more striking
in figure 3 than the influence of the number of sides is the bump
located at the position of msximum thickness. From au examination of
all the numerical computations, it cau be inferred that this bump,
which tends to become more cuspllke as the tier of sides increases,
occurs only when the thickness auxiliary condition is applied with a
subsonic maximum-thickness line. For such conditions, the resulting
airfoil is in violation of the assumptions of linearized theory and

. hence represents a restriction on the use of such a theory. Further-
more, in the use of such airfoils, flow separation would undoubtedly
be a governing factor. As is demonstrated subsequently, if the msxianun-

. thickness tie is supersonic or if the area condition is used, no such
difficulty arises. From figure 3, it can be seen that an increase in
the number of sides from 20 to 4.0 has Jittle effect on either the &rag
or the airfoil shape; a value of N = 20 was therefore selected for
all succeeding computations. Since in this test case the Emiting
airfoil appears to be a difficult one to approximate by line segments,
it is believed that the value of N = 20 is entirely adequate;

Range of computations.- The computations of the wave drag and air-
foil shape for the optimum airfoil sections were performed for delta
wings and for arrow wings, that is, wings having a ratio of the tsmgent
of the trailing-edge sweep angle to the tangent of the leading-edge
sweep sngle of O and 0.4, respectively. The range of values of nl
extended from O.~ to 2.5. For the thickness condition, maxinnun-
thickness locations of 0.20 and O.~0 of the chord were investigated. A
complete summary of the range of computations is presented in table II.
The final computations are tabulated in tables 111 sad IV for the delta
and arrow plan forms, respectively, and are plotted in figures 4 and 5.
Figures 4 and ~ also include the two-dimensional (nl = O) optimum restits.

k Optimum section for the thiclmess condition.- Figure 4 presents a
comparison of the optimum-airfoil-shape and drag calculations with

.
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corresponding double-wedge results (ref. 10) for two chordwise locations
of maximum thickness: 0.20 and 0.50. For-the 0.20 location of maximum
thickness (fig. k(a)) all results for nl > 1 correspond to subsonic

maximum-thickness lines; whereas for the O.~0 location (fig. 4(b)) all
results correspond to supersonic max.inmun-thichesslines.

For both locations of maximun thickness (figs. 4(a) smd 4(b)), plan
form has little effect on the optimum shapes. For nl ~ 1 the optimum
airfoil has almost the same shape and drag as the double-wedge airfoil
(figs. 4(a) and 4(b)). For the O.~0 location of msximum thicbess
(fig. 4(b)), both wings have, for subsonic leading edges (nl > 1), oPti-
nn.unsections which are more full at the front, more closely resemble
subsonic airfoils, and have about 16 percent less drag than the corre-
sponding double-wedge section. For the O.~ location of maximum thick-
ness (fig. 4(a)), the progressive decrease in magnitude of the bump at
maximum thickness is apparent as nl decreases. No discussion of the
drag of wings having subsonic maxhmm-thichess lhes is considered to
be warranted in view of the limitations on the theory and the separation
problem in a real flow for this case.

Optimum section for the area condition.-Figure ~ presents the drag
and optimum airfoil shapes for delta and arrow wings of a given volume.
Again the airfoil shapes are plotted at the appropriate nl values. As
was the result for the thickness condition, plan form had little effect
on the optimum section, and for the supersonic leading edges, the two-
dhensional optimum (the biconvex section) results for all practical
purposes. This latter result was established for an elliptic-plan-form
wing in reference 3. For subsonic leadin&e.Qges (nl > 1), the airfoils
become more full at the front and again reseniblesubsonic airfoils. The
maximum-thickness location has moved forward for large values of nl

sm.dfor the last case computed occurs at ~ percent of the chord. The
progressive rounding of the nose section of-the delta wing for highly
subsonic leading edges is shown in figure 6=where the slender-body air-
foil (nl+~) given by equation (16) (table V) iS co~~ed with airfoi~

derived from Mnear theory. For this slender-body airfoil, the location
of msximum thickness is at 19 percent of the chord. For a value of nl

of 2.5 the I.inesrizedresult already indicates a close similarity with
the limiting result (nl+”) as obtained by slender-body theory.

-

—

The optimum linear-theory airfoil, subject to the thickness condi-
tion, is not compared with the slender-be@ airfoil (derived from an
optimum body of given length and diameter) becagse the auxiliary cond$- ._ _
tions are not comparable.

Comp~ison of airfoil sections for wings of given volume.- In order
to establish a basis of comparison for the drag results in figure 5, the
drag of wings of the seinepl~ fo~ ad VOIUXE but hafing biconvex ad ._

“
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NACA 6~A-series sections was calculated (again for N
pared in figure 7 with the drag of optimun sections.

U-

= 20) and is com-
This comparison is,

perhaps, somewhat artificial in that-preselected values of the-location -
of maximum thickness exist for the biconvex (7O percent) and the NACA
@A-series (40 percent) wings. These results are believed to be of
interest, however, inasmuch as the biconvex section is the two-dimensional
(lq = 0) optimum for a given area and the @A-series section is of current
interest.

For the supersonic leading edges, the drag reduction of the optimum
section as compared with that for the biconvex section is small and
amounts to less than 10 percent. For the subsonic leading edges, the
drag reduction of the optimum section is ~ percent of that of the
biconvex wing of delta pla form d 33 percent of that of arrow plan
form for a value of nl of 1.7 (600 leading-erigesweep at M = 1.4, for
example). Corresponding values of the drag reduction of the optimum
section as compared with those for the NACA 65A-series sections would be
about 10 percent and 15 percent, respectively, at the same value of n,.

CONCLUSIONS

A linearized
minimum-wave-drag

theoretical analysis has been made to determine the
airfoil sections for arrow wings havina the same—

airfoil sections at an spanwlse stations. The &%g of ~he wings was
minimized subject to the condition of either a given thickness ratio
at a specified chordwise location or a given vohune. Numerical co~uta-
tions were performed for a delta wing and an arrow wing having a ratio
of the tangent of tr%iling-edge sweep angle to the tangent of the leadhg-
edge sweep angle of 0.4. The results of the computations indicate that:

1. For either the thickness or the volume condition:

(a) The change ti plan form resulted in ody a sl&ght chsnge
in the optimum section for either subsonic or supersonic leading
edges.

(b) The optimum airfoil section for supersonic leading edges
is very nearly the two-dimensional optimum and the drag reduction
from the two-dimensional optimum is less than 10 percent.

2. For the thiclmess condition:

(a) Drag reductions of about 16 percent from double-wedge
sections resulted for two examples having subsonic leading edges
and supersonic msximum-thickness Enes located at 50 percent of
the chord.
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v

(b) The optimum airfoil sections obtained for subsonic leading
edges with subsonic maximum-thickness lines violate the assumptions
of linear theory. Flow separation over these airfoils would be a

.

governing factor in the drag determination.
—

3. For the volume condition:

(a) Drag reductions of 25 percent and 33 percent from biconvex ,
sections resulted for a delta wing and an srrow wing, respectively,
for a 60° swept lesiiingedge at a ~ch nuniberof 1.4. When com-
pared with NACA 65A-series sections for the same conditions, the
drag reduction is about 10 percent and 15 percent, respectively. —

(b) The optirmm airfoil section for a very slender delta wing
obtained by this analysis approaches the slender-body optimum
section.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., February 17, 1974.
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TABLE I.- DELTA-WINGAIRFOILORDINKI!ESzlt ANDDRAGPARAMETERS

- .+-0

[
n= 1m-0.21.7;~ -

Ordinate, z/t
x

N=5 N=lo IT=20 N=40

o 0 0 0 0
.Oa ------ -.----- ------- .11060
.@o ---&-- ------- .17084 .15093
.on ------ ------- ------- .18862
.100 ------ .248I.2 .24078 .22154
.125 ------ ------- ------- .25309
.150 ------ ------- .29181 .28982
.175 ------ ------- ------- .31681
.200 .5000 .50000 .50000 .50000
.225 ------ ------- -------- .31175
.~o ------ -------

●S533 .28663
*275 ------ ------- ------- .26085
.300 ------ .28241 .26651 .24394
.325 ------ ------- ------- .23050
.350 ------ ------- .23900 .21936
.375 ------ ------- ------- .20966
.400 .2818 .24246 .21935 .20089
.425 ------ ------- ------- .19248
.450 ------ ------- .EQ106 .18414
.475 ------ ------- ------- ,1~84
.500 ------

●20226 .18297 .16759
.525 ------ ------- ------- .15934
.550 ------ ------- .16497 .l~llo
●575 ------ ---.--- ------- .142&5
.600 .1852 .16243 .I&695 .13460
.625 ------ -----.- ------- .12633
.650~ ------ ------- .u2887 .11.804
.675 ---.-- ------- ------- .l@74
.700 ------ .12236 .11071 .lotio
.725 ------ ------- ------- .09305
.no ------ -------- .0f3247 .08468
.775 ------ ------- -------
.mu

.07628
.0930 .08193 .07413 .06787

.825 ------ ------- -------

.13jo
.05943

------ --M---- .05571 .05098
.875 ------ ------- ------- .04~l
.900 ------ .04113 .03721 .03402
.925 .----- ------- ------- .02551
.950 ------ ------- .01864 .01699
.975 ------ ------- ------- .00845

1.000 0 0 0 .00010

~CD

F
2●337 2.0677 1.8412 1.6745

.

.
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TABLE II.- RJl?GEOF COMPUTATIONS FCR OPTIM3M AIRFOIL CAMULATIONS

[N=2FJ

Thickness condition

‘N+@ n ;=02 m Area condition

N“
–= o.~
N

o.? x x x
1.0 x x x

o 1.3 x x
1.7 x x x
2.5 x

●5 x x x

.4
1.3 x x
1.7 x x
2.5 x x

.

.
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(a) Tbickesfi condition

I OMnate, zlt

(b) -. mrdition

, , , , ,
0

JJ 0.1.=.320.dF730 0.c9334 .031780.26726
.2JI.6J!7 .C@y2-( .21@+ .O-f3’p .WQ1

.15 .37238 .l.43e6.35377 .U9sl .43763

.m .yxmJ .195U3 .- .I.6&36.-

.5 .46X% .** .48X9 J@@ .46787

.30 .43951 .23317 .47172 .iq2q .4A557

:2 :%6 :Zl :YG :;% %!!
.45 .34m .44749 .39605 A40s3 .36w9
.~ .31657
.55 .2$=2 :{% :;% :&% :%
.&l .=93 .40031 .Wxq .40778 .27W2
.6 .z2253 .3511’7.*31 .W =4a9
.70 .-J9~ .3ml .=353 .31047 .20335

g :% :gg :gff =& :$m&

.%) :%?% :x ::% :%% :?!%

.5 .032CJI .0@14 .0395.Bo.033110.03577

.W o 0 0

~ 6.9175 4.22u M.4928 4.8%3 4.7317

.1709$‘.l%m

.m .*347

.Ega .31109

.5cxxxl.356J33

.23533 .39%3’

.*1 .42737

.* .ksm

.21935 .4n-io

L
...

.20106 .483*

.Mm .y3ccn

:% :%%
.IZW7 .373@
.llmp .32+40
.fwA7 .27318
.W413 .22$+7
.055’n .-
.OTp .IJlm
.Oti .03621

0

..W.2 3.305

Fq = 0.5
x

K - 0.663X?

) o
.m .@@
.lo .17L55
,15 .2w@
.20 .3C952
,5 .3@J7
.30 .4U37
.35 .-
.40 .4EJ36
.43 .@2!543
.% .-
.35 .4971B
d% J&la
.65 .W
.70 .42673

x :;%
.5 .!xlwf
.W J.&Jo’+
-95 W@
..03 0

%
~

y.6416

Oldlnata, z/t

q = 1.0 q - 1.3

:.0.64033 K - O.~

o 0

.@77 .26700

,U2y2 .33477
.19178 .38351

.a’m .411@

.31722 .4.4C63

.3701 .46392

.4157-7 .482i?l
,45a% ,49448
.471361 .-
.49477 .498s3

:& :~z
.47+387
.4Jt5&3 Ac!Ji’$
.40335
.%832 .31035
.-5 .*W
W!& .174A

.C$ugo
o 0

EctE

- O.’pix

o
.33747
.41427
.4664a
.49C90
.-
.49333
.49X91
.48194
.47E6

%%

:%%
am
.31243
.Z@dg
.*1
.1M49
.O-@5

o

3.7968

Iq - 2.5

[. O.fsyxj

o
.3@5
.42793
.47m
.49771

.m

.hgom
,47a5
.44533
.42134
.39218
.36229

.3331L
:x30m

.23

.19

w $?
.W33
.W-%9

o

2.1.%J3

. . 1
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TABT.EIV.- ARRou-wmo AImoIL omDiA!rM S@ m DRAG PARAumm3

[d 1
~+ kl=O.k; N-20

(a) Tbiclmess ccmtltion (h) Al-mm.n.a+t.iM. ,-, ---- --— ..”.

Ordinate, z/t Ordinate, z/t
I

rq = O.~ nl = 1.5
x

1 1

*

nl = O.~ nl = 1.3

K = 0.66423 K = O.7378O

0 0
.Iwll% .33391

x

-t---l
n) = 0.2 ~ = 0.2
ii E

o 0

.12491 .lm72

K = 0.6311.03K = o.&)36:

o I o
Z!L1 RT .3W08

.lil .2Ai72

.kj ‘

.ZfJ :;CXJOO

.= .46993

.W .43968

.35 .@325

.40 .37866
A5 .34790

.z698
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TABLE V.- DELTA-WING AIXFOIL ORDINATES

SLENDER-BODY THEORY

x

o
.05
.10
.15

a.lg
.20
.%
.30
.37
● 40
.45
.50
955
.60
.65
.70

:E
.85
.90
●95

1.00

z/t–

0
.36060
.45403
.49215
.50000
.49967
.4876o
.46236
.428%
.38837
.34509
.30028
.25546
.21184
.17044
.13210
.09752
.06726
.04182
.02162
.00720

0

BASED ON

NACA TN 3183
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